Derived Math Functions

The following is a list of non-intrinsic mathematical functions that can be derived from the intrinsic math functions provided with CRBasic:

Function CRBasic Equivalent
Secant SEC = 1 / COS(X)
Cosecant COSEC = 1 / SIN(X)
Cotangent COTAN = 1 / TAN(X)
Inverse Sine ARCSIN = ATN(X / SQR(-X * X + 1))
Inverse Cosine ARCCOS = ATN(-X / SQR(-X * X + 1)) + 1.5708
Inverse Secant ARCSEC = ATN(X / SQR(X * X - 1)) + SGN(SGN(X) -1) * 1.5708
Inverse Cosecant ARCCOSEC = ATN(X/SQR(X * X - 1)) + (SGN(X) - 1) * 1.5708
Inverse Cotangent ARCCOTAN = ATN(X) + 1.5708
Hyperbolic Sine HSIN = (EXP(X) - EXP(-X)) / 2
Hyperbolic Cosine HCOS = (EXP(X) + EXP(-X)) / 2
Hyperbolic Tangent HTAN = (EXP(X) - EXP(-X)) / (EXP(X) + EXP(-X))
Hyperbolic Secant HSEC = 2 / (EXP(X) + EXP(-X))
Hyperbolic Cosecant HCOSEC = 2 / (EXP(X) - EXP(-X))
Hyperbolic Cotangent HCOTAN = (EXP(X) + EXP(-X)) / (EXP(X) - EXP(-X))
Inverse Hyperbolic Sine HARCSIN = LOG(X + SQR(X * X + 1))
Inverse Hyperbolic Cosine HARCCOS = LOG(X + SQR(X * X - 1))
Inverse Hyperbolic Tangent HARCTAN = LOG((1 + X) / (1 - X)) / 2
Inverse Hyperbolic Secant HARCSEC = LOG((SQR(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant HARCCOSEC = LOG((SGN(X) * SQR(X * X + 1) +1) / X)
Inverse Hyperbolic Tangent HARCCOTAN = LOG((X + 1) / (X - 1)) / 2
Logarithm LOGN = LOG(X) / LOG(N)